91. Decode Ways
A message containing letters fromA-Z
is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message"12"
, it could be decoded as"AB"
(1 2) or"L"
(12).
The number of ways decoding"12"
is 2.
Solution:
- dp[i] is based on dp[i-1] and dp[i-2]
- 123 ----> 1| 23 or 12|3 . ----> dp[i-1] + dp[i-2]
- other situations:
- s.substring(i-1, i+1) within range (10, 26)
- charAt(i) != 0
{
if(s == null || s.length() == 0 || s.charAt(0) == '0'){
return 0;
}
if(s.length() == 1){
return 1;
}
int[] dp = new int[s.length()];
dp[0] = 1;
if(Integer.parseInt(s.substring(0,2)) > 26){
if(s.charAt(1) != '0'){
dp[1] = 1;
}else{
dp[1] = 0;
}
}else{
if(s.charAt(1) != '0'){
dp[1] = 2;
}else{
dp[1] = 1;
}
}
for(int i = 2; i < s.length(); i++){
int val = Integer.parseInt(s.substring(i-1, i+1));
if(val <= 26 && val >=10){
if(s.charAt(i) != '0'){
dp[i] = dp[i-1] + dp[i-2];
}else{
dp[i] = dp[i-2];
}
}else{
if(s.charAt(i) != '0'){
dp[i] = dp[i-1];
}else{
dp[i] = 0;
}
}
}
return dp[s.length() - 1];
}