239. Sliding Window Maximum
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Givennums=[1,3,-1,-3,5,3,6,7]
, andk= 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as[3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
Solution:
Using a deque to maintain a descending order value of k elements, deque holds the position i of the value in array.
- establish a deque using linkedlist
- iterate through the array, when the head element (the most left element) is out of range (current index - head _element _index >= k) remove the head element
- while the current element value > the tail element of deque, remove the tail element
- for each index+1-k >= 0, update the result array
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length == 0){
return new int[0];
}
LinkedList<Integer> deque = new LinkedList<>();
int[] res = new int[nums.length - k + 1];
for(int i = 0; i < nums.length; i++){
if(!deque.isEmpty() && i-k == deque.peekFirst()){
deque.poll();
}
while(!deque.isEmpty() && nums[i] > nums[deque.peekLast()]){
deque.pollLast();
//deque.add(i);
}
deque.offer(i);
if(i+1-k >=0){
res[i+1-k] = nums[deque.peekFirst()];
}
}
return res;
}